The size-Ramsey number of trees
نویسنده
چکیده
Given a graph G, the size-Ramsey number r̂(G) is the minimum number m for which there exists a graph F on m edges such that any two-coloring of the edges of F admits a monochromatic copy of G. In 1983, J. Beck introduced an invariant β(·) for trees and showed that r̂(T ) = Ω(β(T )). Moreover he conjectured that r̂(T ) = Θ(β(T )). We settle this conjecture by providing a family of graphs and an embedding scheme for trees.
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملOn the Size-Ramsey Number of Hypergraphs
The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...
متن کاملRamsey goodness of bounded degree trees
Given a pair of graphs G and H, the Ramsey number R(G,H) is the smallest N such that every red-blue coloring of the edges of the complete graph KN contains a red copy of G or a blue copy of H. If a graph G is connected, it is well known and easy to show that R(G,H) ≥ (|G| − 1)(χ(H) − 1) + σ(H), where χ(H) is the chromatic number of H and σ(H) is the size of the smallest color class in a χ(H)-co...
متن کاملBranches in random recursive k-ary trees
In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 40 شماره
صفحات -
تاریخ انتشار 2012